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A tetragonal structural model for cationic vacancy ordering in the lanthanide sesquichalcogenides having 
the Th3P4 structure is developed from considerations involving the metal site stereohedra or Wigner-Seitz 
cells and tested by Madelung constant calculations. In addition the anion stereohedra are discussed as 
well as the Voronoi polyhedra for both metal and nonmetal sites. The electrostatic results include crystal 
potential calculations as a function of charge. Madelung constants and potentials were also calculated for 
charge ordering in semiconducting materials like Eu& as a function of atomic position and c/a ratio. 
In these materials electrostatic stability is associated with increasing vacancy and charge ordering. 

Introduction 
The growing literature on rare earth com- 

pounds having the Th3P, structure testifies to the 
great versatility of this high temperature phase in 
accommodating large quantities of metal site 
vacancies and cation substitutions. For the pure 
compounds the composition generally varies 
between R,X3 and R3X, where R represents a 
light rare earth metal and X indicates either sulfur, 
selenium or tellurium (1-4). The R2X, composi- 
tions in the Th,P, structure are insulating or 
semiconducting and correspond to a vacancy 
concentration of l/9 of the metal sites (5). When 
these vacancies are filled with trivalent metals 
such materials as Ce,S,, GdsSe4, and Nd,Te, 
are semimetallic and demonstrate no appreciable 
lattice parameter increase over those of the 
R2X, or metal-poor composition. The vacancies 
in the R2X3 composition can also be wholly or 
partly filled with divalent alkaline earths (4,6-8), 
divalent transition metals (9) or divalent lanthan- 
ides (10) with the maintenance of the semi- 
conducting or insulating character of the R2X, 
composition all the way to the filled structures 
including CaCe,S,, SrGdzSed, YbDy,S,, Eu&, 
and Sm,Se4. In the latter two compounds semi- 
conductivity is achieved by the localization of the 
itinerant electrons responsible for electrical 
conductivity in the trivalent compounds to give 
both trivalent and divalent Sm and Eu atoms in 
the ratio of 2:1 [see (4)]. Thus the versatility of 
the structure to accommodate a variety of substi- 

tutions and hence various electron/atom ratios, 
has encouraged many phase studies, especially 
by Flahaut and his coworkers, as well as many 
studies involving transport phenomena, such as 
thermoelectricity (II, 12), electron mobility 
control (7, 8), electron transport (13, 14), 
Massbauer effects (IS, 16), and superconductivity 
(17), as well as optical (18) and magnetic effects 
(16, 19,20). 

In the above compounds it is generally con- 
sidered that the trivalent and divalent metals, 
as well as the vacancies, all occupy the same set of 
crystallographically equivalent sites on a purely 
statistical basis (5). This is in contrast to the 
situation involving the heavier rare earth chal- 
cogenides where such compounds as BaHozSe, 
have the same orthorhombic structure type (21) 
as CaFe204 involving nonequivalent divalent and 
trivalent sites. As noted earlier (7), the assumption 
of only statistical occupancy is somewhat more 
extreme for the pure lanthanide and actinide 
sesquisulfides for which Zachariasen originally 
proposed that l-l/3 vacancies are randomly 
distributed among the 12 metal sites. Since each 
metal atom has eight near-metal neighbors in the 
ThjP4 structure, the probability of the pairing of 
vacancies is sufficiently high (8/81) that pairing 
cannot be ignored in even a zero-order discussion. 
In addition, the absence of two large metal atoms 
associated with adjacent vacancies would lead to 
serious collapse of the structure in that area and 
would appear to be highly unlikely on the scale 
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called for by the statistics alone. Since the order- 
ing of vacancies does not appear to have been 
discussed in the literature and since such ordering, 
if it exists, could have important ramifications 
in the single crystal properties of these materials, 
the question of vacancy and charge ordering (as 
in Eu+~Eu:~S:-) is the subject of this paper. 

The ordering of vacancies among the metal sites 
is first sought through the construction of the 
Voronoi space-filling polyhedra associated with 
the metal atoms only. Support for the various 
resultant models of vacancy ordering is next 
discussed through the assumption of an ionic 
model and the calculation of Madelung constants 
and Madelung potentials via the method of 
Bertaut (22,23) for structures with site occupancy 
disorder (24). Madelung potentials for the various 
ions are calculated in anticipation of their use in 
the interpretation of photoelectron spectro- 
scopic studies of these materials. The effect of 
charge ordering on the pnictide (or chalcogen) 
position is then considered. In separate sections 
the stereohedra for the nonmetal sites are 
presented as well as the Voronoi polyhedra for 
the aggregate of metal and nonmetal P (phos- 
phorus) sites. In the final section experimental 
evidence for charge and vacancy ordering is 
considered as well as some of the possible 
physical consequences of such ordering. The 
occurrence of ordering should increase interest in 
materials having the noncentrosymmetric Th,P, 
structure since the possibilities for nonlinear op- 
tical and magnetic phenomena are expanded by 
the presence of the uniaxial tetragonal structures 
in this series of compounds of demonstrated 
versatility. 

To close the introduction it is perhaps useful to 
consider the role of the Voronoi polyhedra in 
physical chemistry. Introduced by the mathema- 
tician G. Voronoi (25) in 1908, this polyhedron 
was the three-dimensional analogue of the 
Dirichlet region of a point in an array or aggre- 
gate of points. In a Voronoi polyhedron about a 
particular array point, all increments of space are 
closer to that point of the array than to any other 
point of the array. This concept has been em- 
ployed by Bernal (26) in a treatment of the 
geometric structures of glass and by Smith (27) 
in a discussion of glass viscosity. The Voronoi 
polyhedra are termed “parallelohedra” when the 
array of points are related by translation sym- 
metry only. However, when the array of points 
correspond to a single type ofcrystallographically 
equivalent points these space-filling Voronoi 

polyhedra are generally termed “stereohedra.” 
In solid state physics such stereohedra are the 
well-known Wigner-Seitz cells when centrally 
occupied by an atom. In an interesting discussion 
of ionic structures Gorter (28) recently employed 
his SFP (space-filling polyhedra) in a useful 
classification of ionic crystal structures. These 
SFP are usually stereohedra; however, the 
vertices of these SFP can be partly occupied by 
atomic species different from thecentral occupant. 
In this paper Voronoi polyhedra are used to 
develop a chemically and electrostatically reason- 
able model of disorder. In addition, nonidentical 
Voronoi polyhedra are introduced for the 
Th,P, structure corresponding to an aggregate 
consisting of both the metal and nonmetal sites. 

The Vacancy Model’ 

In the search for a possible ordering of vacan- 
cies in the CezS3-type compounds having the 
Th,P, structure it was quickly apparent that the 
chalcogen positions could and should be ignored 
in the first considerations. The relationship be- 
tween the metal atoms is then revealed by the 
construction of the metal site stereohedra or 
Wigner-Seitz cell. These space-filling polyhedra 
are obtained as follows: The intersections of the 
planes which are the perpendicular bisectors of 
the interatomic metal-metal distances from a 
single metal site define a series of polyhedra of 
increasing volume. The smallest such polyhedron 
containing the central metal site is the desired 
one. For the Th,P, structure one obtains dode- 
cahedra with a volume of l/12 the unit cell and 
which, when duplicated at each metal site with the 
correct orientation, fill all space. Each dode- 
cahedron has eight identical faces which can be 
considered as obliquely truncated isosceles 
triangles associated with the nearest-neighbor 
metal-metal interactions and four additional 
isosceles triangles associated with the next-nearest 
metal-metal distances. These faces are arranged 
to give q symmetry to the polyhedra (see Fig. 1). 
By linking together through their triangular faces 
that set of dodecahedra corresponding to the 
next-nearest interactions only, one forms an open 
(but distorted) diamond-like structure (Fig. 2). 
In this structure of stereohedra all a axes of the 
dodecahedra are parallel to each other and to one 
of the cubic axes. There are three interpenetrating 
networks such that each metal site (or dode- 

’ These vacancy models were first presented at the 
Eighth Rare Earth Research Conference (29). 
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FIG. 1. Two of the space-filling dodecahedra corre- 
sponding to next-nearest metal neighbors in the Th3P4 
structure are shown sharing a common triangular face. 
The stereohedral edges marked a, b and c are perpendicu- 
lar to their 4 axes (the z direction) and make an angle of 
26.56” with the [lOOI or [OlO] direction. 

cahedron) has as nearest neighbors only those 
dodecahedra with their 4 axes perpendicular to its 
own. By randomly distributing the vacancies 
among the metal sites corresponding to just one of 
the diamond-like structures (called here, 0,) one 
obtains a tetragonal structurewith thespacegroup 
Z42d-D:$ (No. 122). In such a case the vacancies 
are no nearer than second-nearest metal-metal 
neighbors and fourth-nearest neighbors including 
the metalloid atoms. This form of ordering gives 
the metal atom a shell of sixteen neighbors before 
it sees the metal atom shell containing vacancies. 

Further ordering is obtained by restricting the 
vacancies to half the D, sites. This results in a 
wurtzite-like structure in which each site V (for 

vacancy) is tetrahedrally surrounded by four F 
(filled) sites and vice-versa. This wurtzite-like 
structure with cell edges, A,, B, and C,, has a 
severe tetragonal distortion such that A&C,,, = 
A, = B, = 1/&z, where a,, is the cubic unit cell 
edge. Now the vacancy sites (V) are only third- 
nearest metal-metal neighbors in a structure of 
even lower tetragonal symmetry (space group 
IbSd2, No 82). This structure is seen in Fig. 2 
which shows neither the filled D, or D, metal 
sites nor the 16 metalloid positions. 

The relation between the various space groups 
is indicated in Table I which shows the symmetry 
of the sites germane to the Th3P4 structure along 
with the approximate atomic parameters. The 
directions of further shifts in the metalloid posi- 
tions are indicated by 6 terms assuming zero 
metal shifts but an increased size for the occupants 
of the D, sites. In calculating the approximate 
parameters we note that between the Th,Pd 
structure and the tetragonal space groups there 
is an origin shift of 0, l/4, -l/8. 

Three possible models for the ordering of 
vacancies in the rare earth sesquichalcogenides 
are now readily described. 

(1) The vacancies can be distributed among the 
12a positions of the ThjP4 structure which include 
the D,, D,, and D, substructures. In agreement 
with Zachariasen’s proposal (5), the probability 
of finding a vacancy in a metal site is l/9 and 
the probability of finding two adjacent vacancies 
is 8181. 

(2) The vacancies are distributed among the 
4a sites of the Z32d-D:$ space group correspond- 
ing to the D, sites only. The probability of finding 
a vacancy in such a site is l/3 for the R2X, 
compositions and vacancies are no closer than 

FIG. 2. The D, substructure of the metal sites with 4 symmetry is illustrated for two unit cells with the relative 
positions of the sites marked V and F the same as in Fig. 1. A charge ordered structure proposed for Eu& would 
have divalent metal atoms in both the V and F positions with the trivalent ions in the metal atom twofold positions 
(not shown) of space group No. 122. 
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TABLE I 

BODY CENTERED TETRAGONAL STRUCTURES AND THEIR RELATION TO THE Th3P4 STRUCTURE 

Space group Position 
Metal Site 
Symmetry 

Metalloid Site 
Position Symmetry u v w’*b 

Z43d-T6 d 
No. 220 
(ThJ’d 

Z42d-D;: 
No. 122 

12a 
(Ox, 6, Dz) 

4a 
(&I 
8d 
CD,, 4) 

FLY,2 
No. 82 

2c 
(VI 

4 000 

4 0++ 

16~ 3 xxx 
X S i+ 

16e 

a Typical atomic parameters are given; equivalent positions are obtained from the unit cell symmetry 
elements. 

b When 6 equals zero both Th and P type atoms are in the filled Th3P4 structure with x(P) = l/12. The 
shift 6 (positive) is for large atoms on the D, sites. 

second-nearest metal neighbors. This would sites in the Ib,S,? structure the probability of the 
appear to be a reasonable model for the ses- site being vacant is 213; now vacancies are no 
quisulfides, as usually prepared, as well as for closer than the third-nearest metal neighbors. 
charge ordered semiconductors like Eu~S, at In the figures the site selected is the 2c or V site. 
low temperature. Such ordering might occur for a well-annealed 

(3) By restricting vacancies to just one of the ;i sesquisulfide. These examples are included in 

TABLE II 

PO.WBLE ORDERED SEMICONDUCTING COMPOUNDS BASED ON Th3P4-TYPE STRUCTURES 

Metal sites 

DZ 
Space Position 

Entry No. Compound F V &A Group No. Fig. 3 

1 Ce2S3 (QCe3+, &O) ($Ce”+, +O) (ge3+, to) 220 A 
2 CeS3 (JCe3+, $3 (3Ce3+, $3 Ce3+ 122 B 
3 CM3 Ce3+ We3+, 3) Ce3+ 82 c, C’ 
4 Sm3S4 Sm2+ Sm2+ Sm3+ 122 B 
5 EuGd,Se4 Eu*+ EL?+ Gd3+ 122 B 
6 FeBaLa4Tes Fez+ Ba*+ La3+ 82 B 
7 TM’2b Th4+ 0 Th4+ 82” D, D’ 
8 MnBaTh4P& Mn2+ Ba*+ Th4+ 82” E 
9 KFeCe& K’+ Fe3’ Ce3+ 82 c, C’ 

10 TiCe4Ses Ti4+ 0 Ce3+ 82 F, F 

D Nonequivalent metalloid atoms are permitted in space group No. 82. 
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Table II along with other possible new semi- 
conducting compounds based on the ThjP., type 
structure. Note that some of these suggest the 
possibility of both n- and P-type conductivity 
with suitable cationic doping. Reports of the 
latter type conductivity are rare (2). 

Electrostatic Energy Calculations 

Support for the above model of vacancy order- 
ing will be presented from the results of Madelung 
constant calculations. However, first it is appro- 
priate to discuss three points pertinent to the 
method and to the structure of interest. 

(1) In the treatment of disordered cations or 
vacancies it is usually assumed that an average 
charge can be associated with the site of disorder 
in a Madelung constant calculation. Using the 
method of Bertaut (22, 23), Brunel and de 
Bergevin (24) have recently shown that this 
assumption is correct for total disorder but that 
the calculation must be modified if partial order- 
ing is present. The cases treated here will be those 
of total disorder. 

(2) While it is unlikely that any material possess- 
ing the Th,P, structure is either wholly ionic or 
wholly covalent (or metallic) in nature, for the 
purposes of this paper an ionic model seems 
appropriate for the rare earth chalcogenides. 
This is in line with the recommendation of Gorter 
(28), who suggests that even for materials of 
appreciable covalency, an ionic representation 
has utility in energy considerations. 

(3) The final point concerns the question of the 
appropriate position parameters to use for the 
metalloid atom or chalcogen. While Zachariasen 
(5) originally suggested the value of x = l/l2 
(0.083), this was predicted by the author to be too 
large on the basis of both electrostatic energy and 
covalent bond considerations (I, 30). This 
prediction has since been experimentally verified 
by Holtzberg, Okaya, and Stemple (31) for the 
compounds LaJSe, (s : 0.075) and GezSe, 
(s = 0.07 I5), by Cox, Steinfink, and Bradley (32) 
for La,Te, (s = 0.075), and by Virkar, Singh, 
and Roman (33) for the anti-Th,P, structure of 
La4RheX (X = 0.057) Accordingly, the following 
electrostatic energy calculations have been made 
with x -= l/l4 (0.0714) as a reasonable and useful 
approximation. 

The electrostatic energy calculations and the 
crystal potentials were obtained using the method 
of Bertaut (22, 23) and the average charge for 
disordered sites (24). Using the notation of 

Templeton (34, 39, forj atoms per unit cell we 
have A _ - w-L _ !% 

c2 RN c F2 O(a)/hz 
I 

(1) 
where A is the Madelung constant, W is the 
electrostatic energy, E is the electron charge, N 
is the number of molecules in the unit cell, z, is 
charge number of the atomj, h is the magnitude 
of the reciprocal lattice vector (h, h2 h,) and F is 
the structure factor term of Eq. (2). 

F : 1 zj exp [2xi(h, x, 1 h, x2 + hJ x3)]. 

(2) 
The function @(a) is equal to the square of the 
Fourier transform of the spherical charge distri- 
bution j((r) of atom j at coordinates (xi x2x3). 
In this paper the charge distribution.f(r) is given 
bv Es. (3) _ _.. 

f‘(r) .= 3(R - r)/rrR4 r s< R 
0 (3) = r> R, 

where R is the effective sphere radius and the 
corresponding self-energy factor g, is =26/35. 
The parameter a is simply 2nhR and L is taken as 
the cube root of the unit cell volume. 

The potential Vj at the site of thejatom is given 
(23) by Vj = a W/az, and may be simply related 
to the total electrostatic energy W by a sum over 
all j atoms; as in Eq. (4). 

w-+x V,Zj. 

While in a few simple binary structures the poten- 
tials Vj may be readily calculated from the 
Madelung constants alone using symmetry 
relations, this is not possible in general. On the 
other hand, using the method of Bertaut, the 
potentials are readily calculated at the same time 
as the Madelung constant. In view of the in- 
creasing interest in the compounds having the 
Th,PJ structure and the demonstrated need for 
the Madelung potentials in the interpretation 
(36, 37) of photoelectron spectroscopy (ESCA) 
the potentials for compounds having the ThjP, 
structure are also reported here. 

Results. In Tables 111 and IV the Madelung 
constant (A)and the Madelung potentials (VjL/c) 
are presented for the various metal and metalloid 
sites of space group No. 84 (f&S,2) with a 
metalloid site charge of -0.75 at both positions 
8g and 8g’ of Table I, with an average cation 
charge of +l.OO, with XL l/14, and with a c/a 
ratio of 1.0. The labels of the columns, Ry, and 
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the rows RF are defined in terms of the average 
cationic charge z,, by Eq. (5) 

RV = 4zac 
RF = z,/zm (5) 
zD = (6 Zac - ZF - +)/4 

TABLE IV 

MADELUNG POTENTIALS AS A FUNCTION OF 

CHARGE FOR c/a = 1.0 

Notation Coefficients 

Crystal- This bo bF 
lographic” paper Constant RF 

bv 
RY 

Metal 
2a F -1.80751 -3.08145 -0.14882 
2c V -1.80751 -0.14882 -3.08145 
8g Dx, D: -6.65292 +0.80757 +0.80757 

Metalloid 
8g +3.83549 +0.05999 -0.05999 
W +3.83549 -0.05999 +0.05999 

a Space group I?-&*, No. 82. 

where zy is the average charge associated with the 
I’ or vacant metal site 2a, zF is the charge of the 
F site 2c, and zD is the charge of the metal atom at 
D,, D, sites, 8g. The calculated Madelung 
potentials may be expressed using Eq. (6) 

Vj L/E = b, + 6, RF + b, R, (6) 
for the condition that the metalloid sites 8g and 
8g’ are the same from a coordination and bond 
distance point of view. Under this condition we 
note from the linearity of Eq. (6) and coefficients 
given in Table IV that the crystal potential for 
the metal atom at site 2c is the transpose of that 
for the metal atom at site 2a and that a similar 
relation obtains for the metalloid atoms at sites 
8g and 8g’. All calculations were made for the 
charge distribution radius R, Eq. (3), equal to 
15% of the a, unit cell edge and to a maximum 
value of cc = 3~: the self-consistency was checked 
using Eq. (4). The correction to the Madelung 
constant suggested by Templeton (34) has not 
been applied due to its smallness (0.1% of the 
Madelung constant) and the uncertainty in its 
proportioning among the crystal potenials of the 
various atoms.2 

The general correctness of these results were 
further checked against the “reduced Madelung 
constant” of Templeton (38, 39) defined by Eq. 
(7)> 

ccR = 2A(R,)/x zj2 (7) j 
2 It appears probable that the correction should be 

proportioned among the atoms j according to their 
charges as 2Zj/ZjZ,* with the sign of the correction chosen 
according to the sign of the charge. 
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where A(&) is the Madelung constant based on 
the smallest cation-anion distance (R,) and the 
sum is taken over all atoms in the unit cell. For 
the ThsP, structure with x = l/14 and RV = Rc = 
1.0, then the reduced Madelung constant, using 
Table III, is CQ = 1.691. Templeton has also 
shown that aR may be approximated by Eq. (8) 
where m is the 

aR = 1.89 - 1.0/m (8) 

weighted harmonic means of the coordination 
number. For the Th3P, structure m = 6.72 and 
substitution in Eq. (8) yields a value of c+ = 1.74, 
in reasonable agreement with the accurate calcul- 
ated value of 1.691. Of greater importance is the 
linearity of the Madelung potentials with charge 
(RF and R,) as indicated by the computed results 
summarized in Table IV. This gives considerable 
support to Templeton’s argument that the charges 
of the ions in ternary and more complex systems 
should enter as the square in the formula for the 
reduced Madelung constant [Eq. (7)]. 

Contours of constant Madelung constant are 
shown in Fig 3 based on the contents of the cubic 
unit cell with the metalloid parameter of x = l/14 
and the two anion charges equal to -0.75. The 
contours are a function of cation charge ratios 
RF and RV [Eq. (5)] and show mirror plane 

symmetry along the diagonals of Fig. 3. This 
mirror symmetry is independent of the x para- 
meter and may be used in conjunction with Table 
III to obtain the Madelung constant in the range 
RF, RV = 0.0 to 2.0. However, we note that this 
high symmetry would disappear if chemically 
different metalloid atoms occupied the 8g and 
8g’ sites. While the Madelung map has been 
calculated only for RF, RV < 2.0, there is no 
reason for this upper limit beyond the practical 
one that few compounds will correspond to the 
picture with RF, RV G 2.0. 

In order to see the effect of vacancy or charge 
ordering on specific examples it is useful to relate 
particular entries of Table II to their position on 
the contour map of Fig. 3. Electrostatically the 
least stable position is indicated by the energy 
minimum in Fig. 3 at position A which cor- 
responds to complete cationic (or vacancy) 
disorder as in Ce& entry 1 of Table II. By 
restricting the vacancy disorder in Ce$, to 
just the D, sites, as in entry 2, we see that the 
structure is electrostatically more stable, position 
B. This position, B, also corresponds to charge 
ordering in Eu& and Sm,S,, entry 4, and to 
cationic ordering in entry 5, EuGd2Se4, and 
cationic ordering according to valence in entry 6. 
If the vacancies in Ce& are restricted to just the 

FIG. 3. A Madelung constant contour map is shown for the Th,P4 structure as a function of the ratio of charges 
of the cations at the F and V sites to the average cationic charge z.,. Here the c/a ratio is 1.0 and the metalloid para- 
meter is x = l/14. The contour intervals are 1.0/c* apart increasing from the central least stable contour of 53.5/a’. 
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V sites, entry 3, Table II, then the structure is 
further stabilized by the shift from position B to 
position C. An example of cationic ordering at 
position C is suggested by entry 9 while a related 
example of both cationic and vacancy ordering 
is indicated by TiCe,Se,, entry 10, at the even 
more stable location, position F. The hypo- 
thesized vacancy ordered compound Th5P,S,, 
entry 7 and position D, and cationic ordered 
compound MnBaTh4P& entry 8 and position 
E, should not really be indicated on the contour 
map unless either there is complete metalloid 
disorder between phosphorus and sulfur or the 
effective charges of the anions are equal and their 
positions are equivalent (unlikely). Similarly it 
is to be expected that the effective charges of 
divalent Fe and Ba in a compound like 
FeBaLa,Te,, entry 6, will not be equal; hence, 
position B for this compound represents an 
idealization. Finally we note that compounds 
which correspond to positions like D and F will 
most likely be obtained in the ordered state if 
they can be prepared. 

Efict of c/a andposition variations. The order- 
ing of charges in materials like Eu& and Sm,S, 
(Table II, No. 4) is expected to result in a tetra- 
gonal structure. Accordingly, the Madelung 
constant, Table V, and the Madelung potentials, 
TabIe VI, have been calculated for these materials 
in the charge ordered state (R, = RF = 0.75) as a 
function of c/a and the metalloid shift parameter 
6 in the tetragonal space group, Z42d-D::. The 
use of 6, as defined below, is a single parameter 
approximation which takes into account the 
increased size of the divalent cations when 
occupying the D, (4a) sites. The four parameters 
indicated in Table I for this space group, No. 122, 
are reduced to one as follows: the metal D,, D, 

parameter, x, is taken as 3/8, that is, its cubic 
Th,P, value. The metalloid position (x,y,z) is 
also related to its cubic Th,P, location by Eq. 9, 

x = x’ + 6x 
y=x’+$+Sy (9) 
z=x’-g+sz 

where x’ is the P site parameter in the space 
group No. 220 and where 6x, 6y, and 6z are our 
adjustable parameters. The eight metalloid 
positions about the metal atom in cubic Th3P4 
have been described (7, 19) as the sum of two 
metalloid tetrahedra, a flat tetrahedron of four 
nonmetals which are almost in a plane perpen- 
dicular to the 4 axis and a long narrow tetra- 
hedron of nonmetals at somewhat greater 
distances experimentally. Now if we keep the 
more important flat tetrahedral distances (two) 
equal for the trivalent cation (8d site) in the 
charge-ordered phase of ELI& then we obtain 
the relationship of Eq. (10). If the flat tetrahedral 
distances 

0=36x-6y-2Sz (10) 
0 = 26y + sz (11) 

are made equal to the long tetrahedral distances 
for the divalent metal in the 4a site with x’ = l/12, 
then Eq. (11) is obtained. These two restrictions 
combine to give the single parameter 8 as in 
Eq. (12). 

s=sy=-sx=-~sz (12) 
For 6 positive and increasing; (1) the eight Eu-S 
distances for divalent europium increase but 
remain equal, (2) the four flat tetrahedral Eu-S 
distances for trivalent europium decrease and 
remain equal, (3) two of the long tetrahedral 
distances of trivalent europium decrease while 

TABLE V 

MADELUNG CONSTANTS FOR c/a vs. METALLOID SHIFT, &IN CHARGE ORDERED COMPOUNDS' 

S= 

cla 0.000 0.005 0.010 0.015 0.020 0.025 

0.96 54.9157 55.2236 55.4427 55.5540 55.5316 55.3425 
0.98 54.1897 54.4842 54.6959 54.8054 54.7864 54.6056 
1.00 53.4794 53.7612 53.9657 54.0735 54.0580 53.8854 
1.02 52.7840 53.0536 53.2514 53.357s 53.345s 53.1812 
1.04 52.1027 52.3606 52.5521 52.6573 52.6489 52.4923 
1.06 51.4350 51.6819 51.8675 51.971s 51.9671 51.8185 

a Space group I&d-D$, No. 122. 
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TABLE VI 

MADELUNC POTENTIALS FOR THE THREE POSITIONS IN CHARGE ORDERED COMPOUNDP 

c/a Site 0.000 0.005 0.010 0.015 0.020 0.025 

0.96 4aUL) -4.3173 -4.1508 -3.9808 -3.8094 -3.6381 -3.4686 
WDx, QJ -5.5785 -5.6693 -5.7711 -5.8823 -6.0014 -6.1265 
16e 3.8894 3.9143 3.9169 3.8949 3.8447 3.7617 

0.98 4a -4.2660 -4.0950 -3.9208 -3.7454 -3.5705 -3.3976 
8d -5.5018 -5.5938 -5.6971 -5.8103 -5.9315 -6.0590 
16e 3.8387 3.8616 3.8629 3.8402 3.7899 3.7073 

1.00 4a -4.2156 -4.0403 -3.8622 -3.6831 -3.5048 -3.3289 
ad -5.4269 -5.5200 -5.6248 -5.7397 -5.8629 -5.9927 
16e 3.7892 3.8101 3.8101 3.7867 3.7363 3.6541 

1.02 4a -4.1659 -3.9867 -3.8049 -3.6224 -3.4410 -3.2622 
ad -5.3537 -5.4479 -5.5540 -5.6706 -5.7957 -5.9277 
16e 3.7406 3.1597 3.7585 3.7345 3.6839 3.6022 

1.04 4a -4.1169 -3.9341 -3.7489 -3.5632 -3.3789 -3.1976 
ad -5.2819 -5.3772 -5.4847 -5.6028 -5.7298 -5.8638 
16e 3.6931 3.7104 3.7080 3.6833 3.6327 3.5515 

1.06 4a -4.0688 -3.8826 -3.6942 -3.5056 -3.3186 -3.1348 
8d -5.2117 -5.3080 -5.4168 -5.5364 -5.6652 -5.8012 
16e 3.6465 3.6620 3.6585 3.6333 3.5827 3.5019 

a Space group l&&-D::, No. 122. 

two increase, and (4) two of the three short 
metalloid-metalloid distances increase while 
one decreases. When 6 is approximately 0.020 the 
distances appear reasonable for Eu,& with the 
exception of the one short metalloid-metalloid 
interaction which remains nonbonding but is too 
short for either a S-S van der Waals interaction 
or an anion interaction. In the real structure 
this short distance is probably removed by the 
variation of x parameter of the metal atom and 
the relaxation of the restriction of Eq. 12. 

As c/a increases we see from Table V that charge 
ordering becomes decreasingly stable. However, 
an increase in 6 gives an initial increase in 
electrostatic stability. Such an increase might be 
expected as the metalloid moves away from the 
larger divalent cation to the more numerous and 
more highly charged trivalent cation. It is 
reasonable to expect that the one parameter 
model using 6 underestimates this effect since the 
short metalloid-metalloid distance decreases 
the Madelung constant. The decrease in the 
Madelung constant for 6 greater than 0.015 is 
probably due to this short metalloid-metalloid 

distance. Even so Table V indicates that a 8 of 
0.020 more than compensates for a c/a increase 
of 0.015 in terms of electrostatic stability. 

Ordering and the Chalcogen Site 

While the rare earth metal in the chalcogenides 
having the Th3P4 structure has a coordination of 
eight in the form of two interpenetrating tetra- 
hedra, the chalcogen atom sits on the threefold 
axis of a twisted trigonal prism of six metal atoms. 
In cubic Th3P4 the chalcogen coordinates are 
X, X, x where x is <l/12 experimentally. As x 
decreases it moves toward the bottom triangle 
of the twisted prism and shortens the distances 
corresponding to the flat tetrahedra about the 
metal site while lengthening the chalcogen-metal 
distances of the top triangle corresponding to the 
long tetrahedra. 

If the semiconducting Sm,S, compound were 
to have an ordered structure with the divalent 
ions in the D, sites (4a positions of the I42d-D:: 
space group) then each sulfur atom would be 
adjacent to two Sm’* ions, one each in the 
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triangular base and top of the trigonal prism. 
The cation arrangement would distort the 
threefold symmetry of the sulfur atom as 
indicated in the section above; however, 
crystallographically there is still only one kind of 
metalloid in the ordered tetragonal Sm& 
structure, that is the 16e position for the space 
group in Table I. 

If, for the sesquisulfides, the vacancies were 
statistically distributed over all the D, sites, the 
above discussion for Sm& would be applicable; 
if however, they were restricted to the V sites 
then two-thirds of these metal positions would be 
vacant. If the vacancies were random among the 
V sites, then the I4-S42 space group would apply 
and there would be equal numbers of two differ- 
ent kinds of sulfur atoms, with the vacancy in 
either the base or top triangle of metal sites. 
Going beyond Table I and ordering the vacancies 
in the Vpositions so that every third I/ site along 
a stack of trigonal prisms ([I 111 direction in 
Th3P4) is now occupied by a metal atom, then 
there are six kinds of chalcogens, four of them 
with five metal neighbors and two of them with 
six neighbors. Other differences between them 
involve their distance from an occupied V site 
and whether the vacant Vsite is in the top triangle 
(long tetrahedra) or in the bottom triangle (flat 
tetrahedra). For the originally proposed (5) 
statistically distributed vacancies in Ce2S3 there 
are a large number of various kinds of S atoms, 
with fair fraction of them (16/81) having a pair 
of vacancies in a single triangular base. 

For the sake of completeness we will describe 
in the next two sections the P site stereohedron 
and the Voronoi polyhedra before considering the 
experimental evidence for vacancy and charge 

ordering. These descriptions involving space- 
filling polyhedra are not only interesting in their 
own light but also provide new and useful in- 
sights into the Th3P4 structure. 

P-Site Stereohedra 

Earlier it was noted by the author (7) that the 
metalloid atoms in the Th3P, structure could be 
linked by their shortest interaction distance to 
form two completely independent but interwoven 
networks. In the tetragonal ZbS,2 space group, 
these independent networks are not equivalent 
and correspond, respectively, to the 8g and 8g’ 
metalloid sites (Table I). In the Th,P, structure 
this difference between the networks is indicated 
by the fact that the stereohedra corresponding to 
the two different networks are enantiomorphically 
related. 

In the Th,P4 structure the P site stereohedron 
for x = l/14 is the trigonal hendecahedron illus- 
trated in Fig. 4. The equilateral triangular faces3 
numbered 1 and 2 correspond to the second 
smallest metalloid-metalloid distance, i.e., inter- 
actions along the body diagonals to the stereo- 
hedron of the other network. The largest quadri- 
laterals, numbered 3-5 are bilaterally symmetric 
and correspond to the shortest interaction 
(absolute) between members of the same network. 
The two remaining sets of trigonally-related 
quadrilaterals numbered 6-8 and 9-11 in Fig. 4 

3 Close examination of Fig. 4 will show to the reader 
that the faces numbered 1 and 2 are not congruent as is 
required by the space-filling properties of the stereohedra. 
The three very small edges in the hexagonal face number 1 
are taken to be a computing round-off error or a minor 
programming bug. 

FIG. 4. The stereohedron for the metalloid or P site (x = l/14) has been drawn for stereoscopic viewing. The XT plane 
is parallel to the plane of the paper with the z axis vertical. The parallel equilateral triangles numbered 1 and 2 are 
perpendicular to the 11111 direction. 
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are congruent in shape and correspond to the 
interaction between one stereohedron and the 
enantiomorphic stereohedra of the other network. 
The relationship of these enantiomorphic stereo- 
hedra is such that a number 6 face of one is 
the number 9, 10, or 11 face of the other. As 
the P parameter x approaches l/12, the shortest 
side in these quadrilateral faces disappears and 
the related vertices correspond to the meeting of 
five faces. When x = l/12 these faces become 
isosceles triangles. 

It is interesting to examine the stereohedron 
for x = l/l2 in its relation to the metal (Th) sites 
and the SFP of Gorter (28). This P site poly- 
hedron (x = l/12) has nine vertices which are 
divided into three groups, corresponding to the 
meeting of three, four, and five faces, respectively. 
The six vertices corresponding to the join of four 
and five faces are sites occupied by the metal 
atoms while no metal site is located at the join of 
three faces. In this case then the stereohedron is 
very similar to the SFP of Gorter. However, as 
x varies away from the value l/12, only the 
three vertices corresponding to the meeting of 
three faces remains fixed in space. In Fig. 4 such a 
vertex is common to the faces numbered 3,6, and 
9. The remaining old vertices, as well as the new 
ones generated when x varies from the value l/12, 
no longer correspond to the metal site locations. 
Hence it is important to note that either the useful 
SFP of Gorter are not in general stereohedra or 
that the metal (metalloid) sites are not generally 
located at the SFP vertices. 

The Voronoi Polyhedra for the Th,P, Structure 

When the aggregate of points in a crystal is the 
sum of points at two or more different crystallo- 

graphic sites then the more general term, Voronoi 
polyhedra, is appropriate for the smallest convex 
cells formed by the planes which perpendicularly 
bisect the intersite distances. In the Th3P, 
structure there are three such Voronoi polyhedra 
forms which, together, fill all space One corre- 
sponds to the Th site and the other two are an 
enantiomorphic pair corresponding to the two 
networks of P sites. 

The metal site cell is the hexadecahedron with 
28 vertices shown in the stereograph, Fig. 5, 
for x = l/14. The 4 symmetry of the site requires 
that there are only four different kinds of polygon 
faces. These faces are sequenced by size and the 
operations of the vertical 4 axis. The largest 
face shown, the octagons numbered 1-4, corre- 
spond to the shortest distance in the structure 
with x = l/14, that is to the four metalloids ar- 
ranged in a flat tetrahedron about the metal site. 
The second largest faces, the heptagons numbered 
5-8, correspond to the four metalloids forming a 
long tetrahedron about the metal site. The re- 
maining triangular polygons of much smaller 
area indicate the eight smallest metal-metal 
distances. 

The P site enantiomorphic Voronoi polyhedra 
are trigonai heptadecahedra with 27 vertices, 
each of which is formed by the meeting of three 
faces. The six metal neighbors about the P site 
atom form a twisted trigonal prism in which the 
metalloid atom is only centered in the trigonal 
prism for the parameter x = l/12. In Fig. 6 we 
see that corresponding to these six metal neigh- 
bors one has the large octagon faces 3-5 and the 
heptagons 6-8. The remaining faces are due to 
metalloid-metalloid distances. 

The three largest of these faces, numbered 9-l 1, 
are bilaterally symmetric pentagons correspond- 

FIG. 5. The Voronoi polyhedron for the metal site is shown for the Th,P., structure with the plane of the paper being 
the xz plane. The 3 axis is parallel to the vertical .z axis and perpendicularly bisects the top edge joining faces 5 and 7. 
The smallest eight faces correspond to closest metal-metal interaction. 
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FIG. 6. This similarly oriented metalloid Voronoi polyhedron (x = l/14) and its enantiomorph are the companions 
to that of Fig. 5. Together they fill all space. The triangular faces numbered 1 and 2 correspond to the second smallest 
metalloid-metalloid distance, an interaction which is along the [ll l] direction. 

ing to the meeting of the congruent Voronoi 
metalloid polyhedra of the same network. Of 
course these faces are related to and are in the 
same plane as the bilaterally symmetric faces of 
the P site stereohedron in Fig. 4. In both cases, 
Figs. 4 and 6, it is interesting to note that the 
three axes of symmetry in these bilaterally sym- 
metric faces are orthogonal, parallel to the x, y, 
and z axes, and constitute the 3 axes through the 
metal polyhedra. The equilateral triangular faces, 
numbers 1 and 2, are the common faces between 
cells of different networks along the unit cell 
body diagonal. The remaining six pentagonal 
faces, unnumbered, are congruent and are shared 
by P site polyhedra of different networks. 

In examining the relationship of the eight 
nearest metalloid Voronoi polyhedra about a 
metal Voronoi polyhedron we find that each metal 
polyhedron has about it four P site polyhedra of 
each network. Each set of four are almost co- 
planar and are joined by their bilaterally sym- 
metric faces to form a half circle which is centered 
on the 4 axis of the metal site. 

Finally we note that the number of faces for 
both of the stereohedra, as well as for the Voronoi 
polyhedra above, are easily less than the maxi- 
mum number, 14 + 8(h - 1), predicted by Delone 
(42) for stereohedra in a three-dimensional lattice 
involving a rotational group of order h. 

Experimental Evidence for Ordering 

The experimental evidence for the ordering of 
vacancies or charge in the Th,P, structure is 
rather meager. The author knows of no lattice 
parameter or single crystal X-ray studies suggest- 

ing vacancy ordering. The observation of vacancy 
ordering would appear to be most likely in the 
light rare earth sesquisulfides grown at the lowest 
possible temperature. Although we have grown 
crystals (42) of Ce& by iodine transport at 
925°C the small size of the crystals (less than 
0.1 mm) prevented a definitive study. However, 
there were no obvious intensity or space group 
violations of the Th,P, structure. On the other 
hand the refractory nature of these materials 
and the lack of lattice parameter variations from 
cubicity suggest that the single crystal could have 
an equal number of tetragonal domains with their 
c axes distributed along the “pseudo” cubic-cell 
edges. A very careful X-ray study involving 
statistical analysis of equivalent reflections may 
be required and/or disorder studies may be indi- 
cated. 

The case for charge ordering is more encourag- 
ing than for vacancy ordering. Recent transport 
studies in bulk Eu$, provide some evidence for 
charge ordering in these semiconducting com- 
pounds. The presence of localized tri- and di- 
valent cations in the ratio of 2 : 1 in samarium and 
europium chalcogenides with the Th3P4 structure 
has long since been established by magnetic 
susceptibility measurements and by their semi- 
conducting properties. Miissbauer studies (15) 
in 1967 by Berkooz, Malamud, and Shtrikman 
show the existence of Eu3+ and Eu2+ ions in the 
expected ratio below 210°K but above that 
temperature the isomer-shift peaks broaden and 
then merge into a single intermediate peak con- 
sistent with a hopping electron transport model 
involving the Eu 2+ “extra” electron. In the same 
material, Bransky, Tallan, and Hed have 
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observed (43) an electrical transition near 175°K 
as an abrupt change in activation energy from 
0.16 to 0.21 eV, in reasonable agreement with 
0.24 eV obtained by Berkooz et al. More recently 
Davis, Bransky, and Tallan (44) have shown from 
differential thermal analysis, magnetic data, and 
X-ray diffractometer tracings that a definite 
phase transformation occurs at 168°K and that 
it is nonmagnetic in origin, While their X-ray data 
is not definitive they have tentatively interpreted 
it on the basis of a tetragonal transformation 
with a c/a ratio of 1.004. From the calculated data 
presented in this paper it is reasonably clear that 
the small Madelung constant change of c/a 
associated with the transformation is more than 
compensated for by the effect of simple charge 
ordering (Table III) as well as by atomic move- 
ment associated with size effects (Table V). 
Accordingly, the observed phase transformation 
of ELI& at 168°K is interpreted as a charge 
order-disorder transformation. 

Such phase transformations should be observ- 
able by other experimental techniques. The loss 
of symmetry from 4- to 2-fold or to none in two- 
thirds of the metal sites suggests that the observa- 
tion of charge or vacancy ordering might be 
possible via EPR, optical, or NMR experiments 
on single crystals. However, the local distortions 
from 4 symmetry may be rather small. On the 
other hand, the effect on the chalcogen is appreci- 
able. For example, in the disordered Zachariasen 
Th3P4 structure there would be many kinds of S 
in Eu&, corresponding to the various combina- 
tions of distributing Eu3+ and EuZ+ ions at the 
corners of a twisted trigonal prism. In the ordered 
structure, at low temperature, only one kind of 
sulfur is present as indicated in Table I. Definitive 
single crystal X-ray support for vacancy ordering 
in the Th3P4 structures may be long in coming 
since an averaging process over different axis 
orientations may be unavoidable. Accordingly, 
other methods of detecting local site symmetry 
changes are highly recommended. 

Summary 

In concluding this paper we note that models 
for vacancy and charge ordering in rare earth 
compounds having the Th,P, type structure have 
been derived from considerations involving the 
metal site space-filling stereohedra. It was further 
shown that these models have been supported by 
the calculations of Madelung constants and, for 
charge ordering in Eu3S4, by experimental data 

from the literature. In addition, a description of 
the metalloid site stereohedron has been given 
along with the Voronoi polyhedra of the Th3P, 
structure. 
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